
What is AxesBrain™ ?

It 'a software package that turns your PC into a control system 

for mechatronics.

The main functions are:

1) motion control

2) work activities, handling pieces, cutting, etc. ..

3) work pieces through the interpretation of commands G-

Code (ISO-CNC)

4) connect to programming languages ​​to develop interfaces 

specific to the human machine interface (HMI)

Its architecture is an integration with the image processing 

software package designed by VisAlgo™



What are its origins? 
Derives from the CNC and automation developed at Olivetti 

robotics Olivetti

years 1974-85

MultiTask-Language

AxesBrainTM

VisAlgoTM

CNC Olivetti

years 1960-80

Algorithms GTL (CNC-milling lathe ) 

Olivetti systems

years 1984-89

FMS-Transfer-Cells 

Olivetti PC

years 1981-89

RealTime system 

Olivetti research

years 1984-87

vision system 



1974 the beginning…. 

1974 Olivetti robotics

Multi Arms = Multi Tasks



The first micromill….

1975 ISO G-Code for micromill maschine



Where we are 
We are of IVREA 

near TURIN 50 Km, near Milan 100 Km, near Genoa 200 Km

famous for the OLIVETTI and Carnival :



Resources and field devices 

Digital input and output, physical and virtual

Analog input and output

Physical and virtual axes

Spindles 



Digital input and output, physical 

and virtual



Digital I/O for axes control



Digital I/O 



Virtual digital I/O



Analog input and output



Physical axes and Spindles



Physical, virtual axes and Spindles



Virtual axes for SCARA

[Xs]

i=VIRTUAL_AXES_NAME( "Xs" , "Ys" )

b={

Description="SCARA"

Kind_Axis="ARM"

Kind_Axis_0=0x00010000 // Type SCARA Kind_Axis_1=0x00000000

Axis_name_ascisse="Xs"

Axis_name_ordinate="Ys"

Axis_name_1=“Step1"             // A1 AXIS ANGLE ARM

Axis_name_2=“Step2"             // B1 AXIS ANGLE FOREARM

Axis_name_3=“Step3"             // C1 AXIS  ROTARY (PULSE)

Axis_name_4=""                      // X1  ADDITIONAL AXIS MOTION 
Lenght_arm_1=200.0

Lenght_arm_2=200.0

Abs_offset_A=100.0

Vel_max_axis_A=20000.0

Acc_max_axis_A=200.0

Dec_max_axis_A=200.0

Abs_offset_O=100.0

Vel_max_axis_O=20000.0

Acc_max_axis_O=1000.0

Dec_max_axis_O=1000.0

e=}

X1

A1
B1

C1

Z1



Virtual axes for  CYLINDRICAL

[Xp]

i=VIRTUAL_AXES_NAME( "Xp" , "Yp" )

b={

Kind_Axis="ARM"

Kind_Axis_0=0x00080000 // CYLINDRICAL SLEEVE

Kind_Axis_1=0x00000000

Axis_name_ascisse="Xc"

Axis_name_ordinate="Yc"

Axis_name_1=“Step4"             // A1 AXIS ANGLE ARM

Axis_name_2=“Step5"             // B1 AXIS LINEAR  (SLEEVE)

Axis_name_3=“Step6"             // C1 AXIS  ROTARY (PULSE)

Axis_name_4=""                      // X1 ADDITIONAL AXIS MOTION 

Lenght_arm_1=000.0

Lenght_arm_2=200.0

Abs_offset_A=150.0

Vel_max_axis_A=50000.0

Acc_max_axis_A=1000.0

Dec_max_axis_A=1000.0

Abs_offset_O=100.0

Vel_max_axis_O=50000.0

Acc_max_axis_O=1000.0

Dec_max_axis_O=1000.0

e=}

A1

X1

C1

Z1

B1



Manual system motion axes



Setting axes +-10Volt PID

The analog +-Volt is a velocity reference, the error of position is 

used to correct the velocity by PID feedback .

1) Proportional error

2) Integrative error

3) Derivative error

Volt= Kc*( P*error+I*Sum of errors+D*Variation of error )



PID Calibration



Chart for an axis 



Structure mechatronics 



Types of openings 

Open top to bottom:
Ability to use the most common fieldbus and drive both analog and digital 

(fieldbus interface) 

Opening up:
possibility of using high level languages ​​to create their own user interface 

(Man-to-machine interface) 



Open top to bottom



Opening up

The Distributed Component Object Model (DCOM known by the acronym, 

English for distributed component object model) is a computer technology 

introduced by Microsoft in 1996.

DCOM allows you to make remote procedure calls across a network, taking 

care of all the mediations necessary, independently of the language, presents 

to the application of specific services, which in general can be used by 

applications "Customers" on the same PC or PC remote.

You can then use languages ​​like VC + +, VB, C #. Net, etc ... to create their 

own HMI 



AxesBrain™

One mind, many tasks at once 
AxesBrain ™ is a software component for the motion control, with Multitask 

capabilities for automation and Multiprocess capabilities for the CNC 

The winning of AxesBrain ™ is its ability to handle multiple processes, 

multiple axes and multiple tasks in parallel.

In fact you can run to 32 fi CNC ISO processes simultaneous and activities  

up to 1024 GP-PLC simultaneously.

These are particularly useful feature for transfer, machines with automatic 

loading-unloading and special machines in general, where processes are 

required parallel working. 

AxesBrain ™ is a control designed to connect to all major fieldbus handling 

axis and the management of I / O.

It also connects in digital mode by ethernet  to drive analog.This flexibility 

offers a wide choice that guarantees a reduction in costs. 



AxesBrain™ features 

• CNC-ISO (milling, lathe)

• 1024 GP-PLC Tasks

• ISO 32 CNC Processes

• Transformation axes in the plane

• 64 axes (16 axes interpolated)

• 4096 I / O

• Linear compensation, quadrature, matrix

• Gantry

• Anti-collision

• Electronic Cam 



Realtime Ethernet technology 

The technology is based on a few points:

1) For the wiring you use the Ethernet cable

2) The master (typically a PC) transmits and receives an Ethernet frame 

using the "standard" the concept of frame is the same as when it transmits 

and receives information on the Internet Traditional

3) The slave devices do not receive and retransmit the frame next to the 

slave, but they see him pass.

4) Finally, the FRAME returns to the Master who receives the complete 

data of all slaves. 



How to combine the traditional 

world with the  Ethenet RealTime 

solution

6 Motor Drive

+- 10Volt 

Ethernet RealTime

with Board EtherBOX

PC-OS+AxesBrain™

32I+32O

3DAC+3ADC

6 Motor Drive

frequency 

6 Motor Drive

+- 10Volt 

32I+32O

3DAC+3ADC

6 Motor Drive

frequency 



PanelPC + Ethernet RealTime

6 Motor Drive

+- 10Volt 

6 Motor Drive

frequency 

32I+32O

3DAC+3ADC

6 Motor Drive

+- 10Volt 

6 Motor Drive

frequency 

32I+32O

3DAC+3ADC

EtherMOVE
EtherBOX EtherBOX

CONSOLE

Cabinet electric 1 Cabinet electric 2

PC-OS+AxesBrain™

Ethernet RealTime



WorkStation +AxesBrain™ + 

Ethernet RealTime

6 Motor Drive

+- 10Volt 

6 Motor Drive

frequency 

32I+32O

3DAC+3ADC

EtherMOVE
EtherBOX

Cabinet electric  

PC-OS+AxesBrain™

Ethernet RealTime

CAD/CAM WorkStation 

Ethernet TCP/IP



EtherCAT communication standard 

Ethernet RealTime 

EtherCAT Motor-Drives

EtherCAT I/OPC-OS+AxesBrain™

EtherCAT



PanelPC + EtherCAT

EtherCAT Motor-Drives

EtherCAT I/O

EtherCAT

EtherCAT I/O

CONSOLE

Cabinet electric

PC-OS+AxesBrain™



WorkStation +AxesBrain™ + 

EtherCAT

EtherCAT Motor-Drives

EtherCAT I/O

EtherCAT

EtherCAT I/O
Cabinet electric

PC-OS+AxesBrain™

CAD/CAM WorkStation Ethernet TCP/IP

Ethernet TCP/IP



PROGRAMMING LANGUAGES 

There are two types of languages​​:

Those oriented to the programming of the machine

PLC (Programmable Logic Controller), of which there are several types, some 

standards (IEC 61131-3), owners of other manufacturer, are used to program 

the functionality of the machine.

This language must be known by the applicator or the manufacturer's

GP-PLC is AxesBrain ™ programming language of the machine 

Those oriented to the programming of the workpiece

ISO CNC G code has also said a common part to all controls G0, G1, G2, G3, 

G4 + a specific part for each manufacturer which is home to parametric test 

functions and subroutines, canned cycles, macros, etc. ...

This language must be known by the operator of the machine. 



Language GP-PLC

It 'a proprietary language type IL (Instruction List), multitasking oriented axis 

movement.

For the management of type AWL PLC I / O, possibility to integrate the 

functions of vision VisAlgo ™.

It has the event management for synchronizing tasks

Provides message management for HMI 



Language ISO-CNC G-Code

ISO CNC G code has also said a common part to all controls G0, G1, G2, G3, 

G4 + a specific part for each manufacturer which is home to parametric test 

functions and subroutines, canned cycles, macros, etc. ...

This language is used by the operator of the machine, program the machining 

of the part defining the tool path, the cycles that the machine must be done in 

several phases.

The name that identifies the location of the axes are: X Y Z A B C U V W 



Image Processing 
The cameras are in the world of the ideal solutions for some problems, let's 

see in detail.

1) Increase the precision of the machine through two measures

The number one trick is to make the work known through a grid, detected 

by video camera on a work sample

The trick number two is to mount a camera on each machine or more, to 

acquire two or more references on a piece placed on the equipment, so you 

know the real translation to be performed on the rotary machining program.

2) Checking the upstream and recognition of parts prior to machining

3) Control of downstream parts after machining 



Vision System ™ VisAlgo 

VisAlgo ™ is a library of functions for the recognition

and image processing 

STRATEGIES FOR RECOGNITION OF OBJECTS 

PATTERN MATCHING

Within an image

is searched for any

a figure learned previously,

even if rotated

than the original. 

BLOB ANALYSIS

In the picture are

detected by contrast

any figure,

that you can

to calculate the center of gravity,

area, perimeter, roundness

and orientation

in the plan. 

EDGE DETECTION

It is able to recognize

edges and these 

figures

obtain the properties

such as thickness, 

center,

rays and orientation

in the plan. 



Integration with the vision
Image acquisition

Rectangles of pixels

640 x 480 768 x 574 1240 x 1000 ... ....

To define a ROI

Determine the BLOB

Extract the geometric features

Pull out the figures to a similar sample (Pattern-maching)

Pull out the characteristics of position coordinates and angle

Pixels / mm

Program the "vision" through –ARI (GP-PLC)  or by  DLL Application 



Programming language for 

automation GP-PLC

Born from the specific CODE (LANGUAGE SIGMA) 1976 Olivetti, one of the 

first programming languages ​​of special machines for assembly of parts, has 

been expanded to meet the modern needs of integration and flexibility. 

Reference to: "Robot Technology at Olivetti: the sigma system" Olivetti, Milan 

1976. 

One of his prerogative beyond the simple syntax is the ability to have the 

multiprogramming each cycle, the prerogative to perform essential tasks of 

assembly and manipulation of parts. 

To describe the work cycle of a manipulator or an automatic you need a language 

capable of learning how to evolve the phases. There are many programming 

languages​​, most of them are "owners" of the company. The specific language 

that must have are multiple, parallel programming phases, synchronization 

between the activities planned, high integration with external devices (vision, 

laser, etc.). 



The structure of GP-PLC 

Sequential language

( Newman )

Logic language 

( Bool )

Procedure ( CALL )

and

Process ( Task )

Local variables ( L )

and

Global variables ( G )



How Start first GP-PLC
When AxesBrainServer start on PC automaticly start also an GP-PLC program  is loaded and running, the 

name is found in “SISTEMA.TXT” in DAT directory.

In segment:       [ParametriAUTOMAZIONE]

and parameter : NomePartProgramLancio=

Example

[ParametriAUTOMAZIONE]

StringaLancio=

NomePartProgramLancio=LogicaMacc.PP

In this case LogicaMacc.PP is loaded and runnig:

Loop -TMM/100

-NET/1

-LDN/T1

-TON/2,1000

-NET/2

-LD/T2

-TON/1,1000

-NET/3

-LD/T2

-PEX/-DIS/11,10:PLC running...

-NOT

-PEX/-DIS/11,10:                        

-JMP/Loop

-RET



Architecture  GP-PLC

The architecture of the sub-system automation is the ability to perform the work 

cycles in parallel with synchronizing events. 

Each program has its own internal proprietary area where local variables are 

allocated, which among other things, the call parameters are stored.

When the program is put into execution, by an explicit command or called by a 

CALL instruction or TSK, its source code is loaded into memory and 

automatically pre-filled, will remain in memory until an explicit command or 

command to delete subsystem RESET.

The programs are combined with a work owner HANDLER on which hang all 

the activities of the cycle, we have an almost infinite number of handlers, with 

this mode you can have very flexible plant configuration, such as lines of 

robots, machines, special multi-head, loading and unloading machines with 

integrated, multifunctional machines, etc. 



Syntax of GP-PLC language 

The language syntax is very simple a triletterale preceded by a "-" represents the 

instruction, a "/" is the delimiter from the parameters of instruction which can be: 

1. Direct references to GLOBAL or LOCAL variables 

2. Indirect references to global GLOBAL or LOCAL  variables

3. Numeric expressions with references to GLOBAL or LOCAL variables

4. Mathematical expressions with references to GLOBAL or LOCAL variables 

5. LABEL jump

6. Names of resources axes, spindles, input and output 

The parameters are separated by commas.

The labels or label for conditional or unconditional jumps are placed before the 

separator "-“ instruction.

Comments are preceded by a semicolon ";"

[Label]-XXX / [parameter 1], ... [n parameter] [; this is a comment]

You can comment on multiple lines using "/ *" at the beginning of the commentary 

and "* /" at the end of the 



Example of Syntax GP-PLC

-LET/L1,500.089 ; Load value 500.089  in LOCAL variable L1

-LET/G100,0 ; Load value 0  in GLOBAL variable G100

BeginCount- ; LABEL BeginCount

-LET/G100,G100+11.23  ; Adds the value 11.23 to the variable G100 

-JLT/G100,L1,BeginCount ; Continue adding until the value

; of the G100 is not equal to or greater than

; indicated in L1 (500.089)

; We use the indirect method to address the Global 100

-LET/L2,100 ; Load value 100  in LOCAL variable L2

-LET/G(L2),0 ; Load value 0  in GLOBAL variable G100

BeginCB- ; LABEL BeginCB

-LET/G(L2),G(L2)+11.23  ; Adds the value to the variable G100 11.23

-JLT/G(L2),L1,BeginCB ; Continue adding until the value

; of the G100 is not equal to or greater than

; indicated in L1 (500.089)



Mathematical operators

+ sum

- subtraction

/ division

* multiplication

^ high

(Open bracket

) Parenthesis 



Mathematical expressions have the 

following functions 
abs    Absolute numbers

acos  Arc cosine

and    And  boolean

asin   Arc sine

atan   Arc tangent

atanw Arc tangent of Y, X

ceil     Rounding up a decimal to an integer

cos     Cosine

cosh   Hyperbolic cosine

deg    Transformation in degrees of an angle 

in radians

exp    Exponential

floor   Rounding down floor of a decimal 

number 

logd   Decimal logarithm

logn   Natural logarithm

lshift  Shift to the left of a number

max  Maximus

min   Minimum

mod  Module of two numbers

not    Not boolean

or      Or boolean

pi       PI greek

rad    Transformation in radians of an 

angle expressed in degrees

rshift Shift to the right of a number

sin     Sine

sinh   Hyperbolic sine

sqr   Square root 

tan    Tangent

tanh   Hyperbolic tangent

xor     Exclusive Or  boolean



Example of mathematical 

expression
-LET/L1, max (sin (rad (G1 +12), cos (rad (+12 G1 * L1/56))

; The local variable is loaded the result of L1 expression:

; max (sin (rad (G1 +12), cos (rad (+12 G1 * L1/56)) 

Note

The numbers are in hexadecimal preceded by 0x

Example:

-LET/L1, 0x10     ;  0x10 = 16 decimal

The use of the operator hexadecimal "0x" is helpful in masking the 

particolarmerne functions "and" and "or", and then use them later-

Example:

-LET/L1, and (L1, 0x8000)

-JEQ/L1, 0x8000, Bit8000Uno 



Dimensions of the parameters can 

be called up

GLOBAL 32,767

LOCAL = NumeroLocali configured in the voice of the configuration file

"SISTEMA.TXT" (expanded from -DIM/Number LOCAL)

WATCH 16

DRT      6

DIS       17 lines

Columns DIS 128

NETwork 128 for instance

Timer (T) 128 for instance 

Counter (C)    128 for instance 



Global and Local variables

In order to perform logical operations, are required to read and write numeric 

variables.

The sub-system AXESBRAIN provides two types of variables:

LOCAL

GLOBAL

Each program recruits is allocated a number of variables equal to that configured 

in the system, are all cleared and are available to the instructions of that 

program, the first variables are set with the call parameters of the command 

execution , the variables remain in memory available for query and visualization 

operations.



Local
The number of spaces may be changed from that provided in the "SISTEMA.TXT" to 

segment [ParametriGenerali] and parameter  "NumeroLocali =“.

Using -DIM/numero local education, which is defined only for that instance of the 

task.

A special case are the programs called by the instructions of "CAL" and "TSK" with 

parameters in these cases the first local variables are loaded with parameters 

positional calls in the same order, if there are parameters in the call LOCAL the new 

value will be loaded with the return of the program called. 

-CAL/, routinemia: L9,12,23, G1+89, L7

when the return from  "routinemia" L9 and L7 have the value defined in the routine, in this case L9 has a 

value of 11 and L7 will have a value of 3 

In fact, the code "routinemia" is as follows:

-LET/L1, 11

-LET/L5, 3

Upon execution of the local variables of "routinemia" are:

L1 = value of the calling program L9 

L2 = 12

L3 = 23

L4 = value of variable 89 + G1

L5 = L7 value of the calling program 



Global

Besides the Local variables in the automation system are expected 32767 

GLOBAL variables that are invoked with the letter "G" and the number thereof.

All are saved to HardDisk GLOBAL, which can then be used to store persistent 

data. 

The Global HardDisk output is stored on the system or procedure "SHUT 

DOWN" you can still do this with instruction SGL.

The write operation is performed with the Global COMMIT mode to ensure the 

integrity with the last save. 

To index global or local, you can use the parenthesis followed by global or local use 

as an index. 

Example:

And this is an example of indexed programming

-LET/ L1, 1

-LET/ G (L1), 0

here -TMM/50

-JNE / G (L1) 1, here   ; expects the value of global variable G1 is set to 1



MultiTask

An important feature in automation is being able to perform multiple tasks 

together, coordinate with each other or not, so we need to have the 

functionality of "MULTITASK".

A cycle of activities can be performed with an explicit command, or by an 

instruction "-TSK", the cycle or program is combined with a business owner 

HANDLER on which hang all the activities of the cycle, we have an almost 

infinite number of HANDLER.

A "TASK" can be deleted by another task or itself with the statement "-TKM" 

or when RESET is performed in the automation system.

The concept of HANDLER is also useful to see it as a channel on which 

operations are conducted continuously beginning of the movement, 

movement combinations, until the movements are completed. 



Anticollision between axes 

With this architecture we are able to see the movement system as a device 

with several "arms" that work together or not coordinated, dynamically 

aggregating groups of axes.

An interesting example may be to imagine the filling of a tray of glasses, at an 

early stage we have two "arms" that fill the glasses separately, the system 

handles the collision, and so we have two sets of axes which work separately, 

when the glasses are been filled the system, bringing together the two arms 

the way a waiter brings the tray to the unloading area.

As first revealed during the filling of glasses, the two arms of the same affecting 

physical axis X, thanks to the management of collision is possible to program 

two independent cycles of filling, synchronize the two to complete their 

respective stages, then program a single cycle drain tray with a unique 

grouping of the two arms. 



Mathematical Instructions

1-LET (SET) Set the value of a variable (LET)

2-ADD Sum the value of a variable (added)

3 -MUL Multiply the value of a variable

4-DIV Divide a variable with the value of the expression (Divided)

5-NEG Negate the value of a variable (negation)

6-LBF Set to an array of variables at the value (Load buffer) 



Control Instructions 
1-JMP Jump unconditionally to a label (jump)

.2-JEQ Jump to a label if the two expressions are equal (Jump if Equal)

.3-JNE Jump to a label if the two expressions are not equal (in the Jump Not Equal)

.4-JLT Jump to a label if the value of the first parameter is less than the second (Jump if Less Then)

.5-JLE Jump to a label if the value of the first parameter is less than or equal to the second (Jump if 

Less then and Equal)

.6-JGT Jump to a label if the value of the first parameter is greater than the second (jump if Great 

Then)

.7-JGE Jump to a label if the value of the first parameter is greater than the second (and then Great 

Jump if Equal)

.8-JRN jump if the value of the parameter is within the range (Jump if Range)

.9-JNR jump if the value of the parameter is out of range (Jump If Not Range)

.10-JOS Skip if at least one bit of the parameter value is one (Or Jump if Bit Set)

.11-JOC Skip if at least one bit of the parameter value is zero (Or Jump if Bit Clear)

.12 JAS jump if all bits of the value of a parameter are (Jump And if Bit Set)

.13-JAC Jump if all bits of the parameter value is zero (Jump And if Bit Clear)

.14 ​​CAL Call-part program, passing parameters (CALL)

.15-RET Return to the caller of the program (Return)

.16-END   Process END (END)

.17-TSK   executes in parallel a series of work (task)

.18-TKM  restore and delete a cycle of work (Task manegement)

.19-DIM   Dimensions variable number L of a part pogram 



Motion Instructions 1 Part
.1-HOM (OMO) Origin of an axis (homing)

.2 MOV Movement-a group of linearly interpolated axes (MOVE)

.3-CIR Interpolated circular or elliptical motion in a clockwise direction of a 

group of axles (Right Circular)

.4-CIL Interpolated circular or elliptical motion in a counterclockwise 

direction of a group of axes (Left Circular)

.5-CRR Interpolated motion in a clockwise circular or elliptical axes group 

with a known radius (Radius Right Circular)

.6-CRL Interpolated motion counterclockwise circular or elliptical axes 

group with a known radius (Radius Left Circular)

.7-STC Start with a definition of handling continuous path

(Start Continuous)

.8-HLC Pending the completion of handling continuous

(HaLtContinuous)

.9-ABC Cancellation of continuous motion (Continuous Abort)

.10-CAP Change the parameters axis (Axis Parameter Change)

.11-HMS Management master-slave (master-slave Handling)



Motion Instructions 2 Part

.12-HEC Cam Management (Handling Electronic Cam)

.13-GEI Read details of the cam (Cam Get Electronic Information)

.14-CFR Change the dynamic parameters of an axis (Change Feed Rate)

.15-CPL Change the position loop (Loop Change Position)

.16-PRD Law PRD-axis positions (Read Position)

.17-RAV Law axis parameters (Read Axis Value)

.18-RSV Reads the speed of a spindle (Read Speed ​​Value)

.19-SFP Sets the speed of the movement profile (Sep Feed Profile)

.20-SPD Set the speed of rotation of a spindle (SPEED)

.21-TCH Movement with touch ( probe) sensor (Touch)

.22-TMT Movement with research value of the analog signal (Test Trasducer 

Movement)



Motion Instructions 3 Part

.23-TMS Movement with research value of the digital sensor (Sensor Movement Test)

.24-TPE Enabled the probe (Touch Probe Enable)

.25-SZP Define the position of zeros of a set machine (Set Zero Point)

.26-LZP Enable a set of zeros car (Zero Point Load)

.27-PIN (INQ) Flag on an axis incremental (Incremental Position)

.28-PAB (ABS) Flag on an axis of absolute (Absolute Position)

.29-MMA Moves an axis with a manual movement (Move Axis Manual)

.30-OPT Opens a file of points (PoINT Open file)

.31-MOR Linearly interpolated movement of an axle group advance

(Re MOV)

.32-DCT Controlled movement with depth probe (Deep Touch Control)

.33-DCS Movement with depth controlled by digital input (Deep Control Sensor)

.34-GRM Commands to the axes and spindles grouped (Group Management) 



I/O Instructions 1 Part

.1-WDI (WIN) Waits for a signal digital input for a given state (Wait Digital Input)

.2-WAI Waits for an input signal and analog ports to a given state

(Wait Analog Input)

.3-AIN Wait for analog inputs on the G or L (Analog Input)

.4-TDI (TES) Performs a test on a digital input signal (Test Digital Input) 

.5-TDO Performs a test on a digital output signal (Test Digital Output) 

.6-IDI Performs a test on a digital input signal (If Digital Input)

.7-IDO Performs a test on a digital output signal (If Digital Output) 

.8-TAI Performs a test on an analog input signal(Test Analog Input)

.9-SDO (SAX) Sets or resets the digital output signals (Set Digital Output)

.10-EDO Sets or resets the digital output signals on the basis of a test

(Enanced Digital Output)



I/O Instructions 2 Part

.11-SAO(SAC) Writes the value of an analog signal output (Set Analog Output)

.12-GDI (RBI) Reads the value of a digital signal input (Get Digital Input)

.13-GDO Reads the value of a digital signal output (Get Digital Output)

.14-GAI (RAI) Reads the value of an analog input signal (Get Analog Input)

.15-WBD (BPO) Writes a block of output digital signals (digital inputs Write 

Buffer)

.16-RBD (BPI) Reads a block of digital input signals (Read Digital Input Buffer)

.17-CPI Waits for a digital input signal undergoes a change

.18-CDI At the changing digital input signal activates a task or process

.19-CDO At the change of digital input signal activates a task or process

.20-RDI Take action test on a digital input signal by activating a task if 

the test is positive (Run Digital Input)

.21-RDO Take action test on a digital output signal activating a task if the 

test is positive (Run Digital Output) 



Synchronization Instructions 

.1-EVS Sect of synchronization events (Event Set)

.2-EVC Reset the synchronization events (clear event)

.3-EVW Wait some synchronization events (Event Wait)

.4-EVG Reads the status of events (Event Get)

.5-CSA Create a synchronization for the use of an axis between multiple tasks 

(Create SyncroAxes)

.6-WSA synchronization waits for the use of an axis between multiple tasks (Wait 

Syncro Axes)

7-DSA eliminates synchronization for the use of an axis between multiple tasks 

(Delete Syncro Axes) 



Service Instructions 1 Part

.1-FOC (AZZ) Clears the contents of a file or create if not exists (Create File 

Open)

.2-FWR (SCR) Writes a record to file (File write)

.3-FWA Writes a record to file (ASCII File Write)

.4-FRD (LEG) Reads a record from a file (Read Files)

.5-TIM Timer in seconds (TIME)

.6-TMM Timer in milliseconds (Time Millisecond)

.7-SWA Initialize a watch (Start Watch)

.8-RWA Read a watch ​​(Read Watch)

.9-HWA Halt a watch (Halt Watch)

.10-CWA Continue a watch (Continue Watch)

.11-KYB Waits for an Keyboard (Keyboard)

.12-DRT Continuously displays the values ​​of axes, global signals (Real 

Time Display)

.13-DIS Displays a line message (Display) 



Service Instructions 2 Part
.14-HLD Send a system in the state of Cycle Stop (HOLD)

.15-PWO Send in the state of the system power on (poweron)

.16-EMC Send in the state of the system on Emergency (Emergency)

.17-LCK Lock the task and possibly a SEC report

.18-ULK Release all tasks in a state of LOCK

.19-RST system reset (RESET)

.20-SDW Shut down the system (shutdown)

.21-SOR Sorting a sequence of values ​​(SORT)

.22-GTK Detect information related to a task or process (Get Task 

information)

.23-MDI Performs a ISO program - GCode (MDI)

.24-OTC Set ISO tables Origin Tool Corrector - GCode (OTC)

.25-ISO Performs a ISO program - GCode (ISO)

.26-WND Wait a reporting error state resources or spindle axis

(Wait Notify Detected)

.27 WKY Waits press a button (Wait Keyboard)

.28-NHL No Hold 

.29 YHL Hold Yes



Service Instructions 3 Part

.30-GDT Get Date and Time

.31-GAT Get Absolute Date and Time

.32-GLN Get Local Number

.33-GMI Motion Get Information

.34-RTC Read Timer or Counter

.35-SGL Save Global

.36-SHL Shell or application procedures

.37-G80 G80 End fixedcycle (G80)

.38-G81-89 G81 .. G89 Activate fixed cycle specified

.39-ESE Performs sequences external (Exec Sequence) system ETEL

.40-ERR View logs external (External Read Registry) system ETEL

.41-EWR Write registers external (External Write Registry) system ETEL

.42-ECM Runs an external command (External Command) system ETEL

.43-EWS Waits for a (External Wait Signal) system ETEL

.44-CLM Machine System Command to Logic ETEL

.45-SND Please issue a WAV file on 'PC audio output 



Instructions for integration with 

other environments 

.1-ARI Request execution of an instruction to the environment specified in the 

first parameter and waits for a response (return made ​​with the function 

of "WriteServiceParametersAndContinue" subsystem automation 

AXESBRAIN)

(Ambient Request Instruction)

.2-SEC Set client event 



Comunication Instructions 1 Part

.1-CSO Connection to a socket (TCP / IP Socket Connect)

.2-LSO Listen to a TCP / IP socket (Listen Socket)

.3-RSO Read data traveling over a TCP / IP socket (Socket Read)

.4-TSO Writes on a TCP / IP socket (Socket Write)

.5-DSO ​​ Delete a connection to a TCP / IP socket (Socket Destroy)

.6-FSO Clear any data received on a TCP / IP socket (Socket Free)

7-GSO Captures information from a TCP / IP socket (get information 

sockets)

.8-OSL Opens a serial port (Serial Line Open)

.9-RXL Receive data from a serial line (Receive Serial Line)

.10-TXL Transmits data over a serial line (Serial Line Transmit)

.11-CSL Closes the serial port (Serial Line Close)

.12-FSL Clear any data received from a serial line (Serial Line Free)

.13-RFB Read data FieldBus

.13​-WFB Write data on FieldBus 



Comunication Instructions 2 Part

.15-RGS Reset line GSM / GPRS

.16-SMS Send SMS on GSM / GPRS

.17-WMS Wait SMS message from GSM / GPRS

.18-CGS Makes a call on GSM / GPRS

.19-WRG Wait a call from GSM / GPRS

.20-CTL Please call on phone line

.21-WTL Wait a call from the telephone line

.22-STL Closes the telephone line

.23-GTL Acquires a number from the telephone line

.24-PTL Send a file recorded on the telephone line

.25-EML Send a E-Mail 



AWL GP-PLC Special Operations 

Ladder 1 Part

The normally open contact is closed (on) if the bit value of the address n is 1.

In AWL, the Normally Open contact is represented by operations such as:

Upload operation, combines the bit through And, combines the value of bits by 

OR. These operations, respectively, load the value in the value of n bits from the 

top of the stack, or combine with AND or OR value with the value of n bits of the 

top of the stack.

Normally closed contact is closed (on) if the address bit value is 0 n

In AWL, the normally closed contact is represented by operations such as:

Load the value of bits denied, combines the bit And by Denied, denied Combine 

the value of bits by OR.

This loads the value in the value of n bits from the top of the stack, or combine 

with And or Or the value of n bits of the highest value of the stack.



AWL GP-PLC Special Operations 

Ladder 2 Part

Direct contacts

The Normally Open Immediate contact is closed (on) if the value of bit n is 1 

physical input routed.

In AWL, the Normally Open Immediate contact is represented by the operations of 

the type

Load the value of bits directly, And Combines bits directly through, and combines 

bits directly by OR.

These operations, respectively, load the value directly to the value of n bits from 

the top of the stack, or combine directly via AND or OR value n-bit physical input 

routed the highest value of the stack.

The normally closed Direct contact is closed (on) if the bit addressed physical 

input n is 0.

In AWL, the normally closed contact is represented by operations such as Load 

the value of bits directly denied, n-bit value directly denied by AND, and combines 

directly denied the value of bits by OR. These operations, respectively, loaded 

directly denied the address bit value in the value of n top of the stack, or combine 

directly via AND or OR value n-bit address denied the highest value of the stack.



AWL GP-PLC Special Operations 

Ladder 3 Part

Not Contact

Contact NOT change the status of the signals. If the current flow reaches Not the 

contact is blocked. If the flow does not reach the contact Not, this generates current 

flow.

In AWL, the operation denial of higher value than the value of the stack changes 

from 0 to 1 or from 1 to O.

Semantic Rules

The character '#' indicates that the value of the numeric value is interpreted as 0 or 

1.

Example 1:

-NET / 1

-LD / # 1 ; the value 1 is loaded into the STACK



AWL PLC Instructions 1 Part

.1-NET Network PLC

.2-LD Load Operation

.3-LDN Load Operation denied 

.4-A Combines the value of bits by AND

.5-AN Combines the value of bits denied by AND

.6-O Combines the value of bits by OR

.7-ON Combines the value of bits denied by OR

.8-EU Positive edge detection

.9-AND Negative edge detection

.10-EQU Copy the value specified in parameter top of the stack

.11-S Set to 1 the number of points specified if the stack is 1

.12-R Set to 0 the number of points specified if the stack is 1

.13-LPP Fetching logic

.14-LPS Logic Duplication

.15-LRD Copying PLC logic

.16-ALD Combines the first and second elements by AND



AWL PLC Instructions 2 Part
.17-OLD Combines the first and second elements by OR

.18-NOT Change the value higher

.19-LEQ Compares two values ​​if the same charge with the stack 1 if no 0

.20-LGE Compares two values ​​if equal or greater load with the stack 1 if no 0

.21-LLE Compares two values ​​if equal to or less current with the stack 1 if no0

.22-AEQ Compares two values ​​if the AND is equal to 1 with the stack

.23-AGE Compares two values ​​if equal to or greater than 1 is the AND with the 

stack

.24-ALE Compares two values ​​if equal to or less than 1 is the AND with the 

stack

.25-OEQ Compare two values ​​if the OR is equal to 1 with the stack

.26-OGE Compares two values ​​if equal to or greater than 1 is the OR with the 

stack

.27-OLE Compares two values ​​if equal to or less makes the O-1 with the stack

.28-PEX Run PLC 1 in the instruction stack AXESBRAIN

.29-TON Timer without retention

.30-TOR Timer with retention

.31-CTU Counter Up

.32-CUD Counter-Up and Down



Virtual Axes SCARA



Virtual Axes Cylindrical



Control axis handwheel 

The positioning of an axis in manual mode can be combined with a device called 

a flyer that is seen by the system as an axis of read-only.

The value read from the wheel position change the position of the combined, so 

you can give to the micrometer increments' axis itself.

The leaflet is seen as an axis of read-only, and through appropriate command is 

coupled to a shaft that will remain controlled.

In AXESBRAIN automation language, the instruction "-HMS" allows arming and 

disarming of a wheel axle "master" to a positioning axis "slave".

To manage the combined wheel axle axis positioning in a "DCOM", the service 

must be used "WriteAxesRegister" for both axes. 



Gantry
The gantry axis (gantry) is a mechanically rigid (normally a bridge structure) and 

thus corresponds to a single axis, but is treated as if it were from the control 

consists of a pair of aces (master axis and slave axis, each with their own 

counting systems and their operation.

One of the functions of control is to maintain the position of the "slave" as close as 

possible to the axis "master". 

Asse master

Asse slave



Electronic Cams 
The cam allows you to match the position of an axle group to an axis "master" and 

a table of multiple locations. 

And 'it can electronically simulate the behavior of the cams, replace the 

mechanical operation with a similar system consisting of a group of axles coupled 

to an axis "master" that can be read-only.

The laws of motion of the sellers is defined as a table of vectors, which defisse 

positions relative to the moving cam.

In AXESBRAIN automation language, the statement "HEC-" allows the 

management of electronic cams.

To manage the cams electrical environment "DCOM", the service must be used 

"WriteAxesRegister" for all axes. 



Automation HMI Generic



Automation HMI Editor



Automation HMI 2D Graphics



Automation HMI 3D Graphics



Automation HMI Debug 



Automation HMI Globals View



ISO G-CODE

1-G functions

2-M functions

3-Origins

4-Tools

5-Parameters

5-G M and Special Functions

7-Fixed cycles

8-G89 Fixed cycle

9-Program control functions 

You can have up to 32 processes simultaneously ISO CNC 



G Fucntions Part 1

G00 Rapid positioning axes

G01 Linear interpolation

G02 circular interpolation or spiral clockwise

G03 circular or helical interpolation CCW

G04 timed pause, pause time scheduled.

G08 deceleration at the end of the block that contains

G09 activation mode "Looking Forward"

G17 specific XY and Z axis perpendicular to work surface

G18 ZX as a specific work plan and Y-axis perpendicular

G19 YZ as a specific work plan and X axis perpendicular

G30 deceleration at the end of the block that contains it and reboot continuously

G32 End subroutine

G40 cancels G41 and G42

G41 activation radius, tool on the left of the profile

G42 activation radius, the right of the profile tool

G49-range value statement

G50 end rototranslation

G51 rototranslation



G Fucntions Part 2

G52 G92 shift of the origins equal

G54 X mirror

G55 Y-Mirror

G56 Z-mirrors

G57 X and Y mirrors

G58 Z and X mirror

G59 mirrors Y and Z

G60 end of the scale factor

G61 scaling factor

G62 absolute center of the circle K1 K2 Incremental

G70 Programming in inches G70

G71 mm programming

G75 programming Cartesian

G76 Polar programming

G78 Tangential to the path setting 

G79 Tangential to the path setting end 



G Fucntions Part 2

G80 Canned cycle cancel

G81 Canned cycle for drilling

G82 Canned cycle for counterbore

G83 Canned cycle for drilling deep

G84 Canned cycle for tapping

G85 Canned cycle for drilling

G86 Canned cycle boring

G89 canned cycle call of a part program AxesBrain

G90 Absolute programming

G91 incremental programming

G92 shift the origins

G100 - G1999 features AxesBrain 



M Functions

M00 Stop

M03 Clockwise rotation of the spindle

M04 Vnti-clockwise rotation of the spindle

M05 Spindle stop

M06 Tool change

M07 Activation of the secondary coolant

M08 Vctivation of primary coolant

M09 Coolant Off

M10 Locking axis activation

M11 Locking off-axis

M13 Clockwise spindle and coolant activation

M14 Anticlockwise spindle and coolant activation

M19 Spindle orientation

M30 Program end, clears the active auxiliary functions

M31 - M1999 Customer features 



Origins

The table of the Origins is used for activating or to disarm (O0) the origins during 

the workmanship, and it is situated in the in the file of the origins. 

Every process ISO works on a table proper of Origins, through the session 

[AbbinamentoOrigini] of the file “sistema.txt” it is possible to specify the whole 

run and the containing filename the table. 



Tools

The table of the tools (TOOL) is used for activating or to disarm the 

tools during the workmanship, and it is situated in the file of the 

Tool. 

Every process ISO works on a table proper of Tools (TOOL), 

through the session [AbbinamentoTOOL] of the file “sistema.txt” it 

is possible to specify the whole run and the containing filename the 

table. 



Parameters
The system allows the part program for each instance of the parameters defined 

by ISO 256 letter P.

The parameters P can be used instead of numerical statements of position or 

another as an example: 

P34=10

P35=500

XP34Y0

G4 P35
They can also be used to control the different branches work with the following 

syntax 

{Pm=Pn} Li 

{Pm>Pn} Li 

{Pm<Pn} Li 

{Pm<=Pn} Li  

{Pm>=Pn} Li 

{Pm<>Pn} Li

Example:

L=loop

P3=P3+1

{P3<10}loop



G M and Special Functions

The special functions G or M or H  call a GP-PLC program with these L 

Local variables set:

L1 = Number Z-axis with respect to the Work Plan

L2 = Spindle number

L3 = 0, or AS number AxisSpindle

L4 = Number of head defined in "Base_NumeroTesta" or 0

L5 = Spindle Speed 

L6 = 1 if M, 2 if G, if H 3

L7 = G or M number of caller

L11 = K

L12 = Q

L13 = J

L14 = I

L15 = H

L16 = Number Origin

L17 = Number Tool

L18 = Number Correction



Fixed cycles

A fixed cycle drilling in an NC program is always scheduled in the following 

partial steps:

Assign parameters

Select the desired drive cycle

Move to the working position in X and Y (once or repeatedly)

Automatically call and execute the selected fixed cycle after reaching the 

working position

Clear the cycle 



G89 Fixed cycle

The function G89 Fixed Cycle if declared in the file "sistema.txt" under section 

PartProgramG89 ParametriGenerali, activates the part program of automation.

[ParametriGenerali]

PartProgramG89 = [name of the part program automation]

For each movement if they follow the G89 function, the part program is called 

automation defined in the file "sistema.txt", with the passing of parameters:

L1 = Number Z-axis with respect to the Work Plan

L2 = Spindle number

L3 = 0, or AS number AxisSpindle

L4 = Number of head defined in "Base_NumeroTesta" or 0

L5 = Spindle Speed ​​(speed value of the active block included)

L6 = PosZ_start

L7 = PosZ_drill

L8 = PosZ_Return

L9 = VelZ_drilling or Step

L10 = Time in milliseconds, or strain rate

L11 = First PosZ_start increase from

L12 =  Increment

L13 = Increased Safety



Program control functions
Patterns of part of the program

Using the ” L” codes can be repeated n times a program or part of it. The 

maximum number is 32767.

The part of the program you want to repeat is enclosed between a reference 

definition of "label" Education jump to the label followed by the number of 

repetitions.

The number of repetitions can be a number or a parameter. 

Subroutines inside the program

Is defined as a sequence of sub-blocks that can be called from different parts of 

the main program (for example, the sequence of several points on which to apply 

the different canned, drilling, casing, drilling, etc..) Or a profile to be called several 

times in different locations or with different ray correctors.

The subroutine is called scheduling function L followed by the number of the sub.

The subroutines inside the main program must be scheduled at the end of it, 

upon the function M30. 



ISO G_CODE HMI Tables Mill



ISO G_CODE HMI Tables Lathe



ISO G_CODE HMI DXF->ISO



ISO G_CODE HMI CNC Mill



ISO G_CODE HMI Grafic Mill



ISO G_CODE HMI manual CNC



ISO G_CODE HMI Editor Mill



ISO G_CODE HMI CNC Lathe



ISO G_CODE HMI Editor Lathe



Stepper motors and drive 

frequency 
The pilot of the motor drive system is now a standard and consists of two inputs for 

the drive 5Volt, a signal called DIR is the direction of motor rotation

5Volt if (logic one) clockwise if 0Volt (logical zero) counterclockwise rotation, a 

second signal called PULSE, which every change of state from 0 to 5Volt causes a 

release of a fraction of a step motor (subway), in pilot mode called frequency. 

The customization of the drive, it says how many underpasses is divided by the 

step (STEP), you get up to 256 underpasses in almost all drives, usually to make 

a round engine requires about 200 steps, with a divider so that we 256, the 

motor revolution is divided into 51200 shares. 

If we combine a relationship to motor around 10mm, we have a subway (a pulse) 

of 0.0002 mm, all with a technology very economic cost of a drive-by-step starting 

at 120 € and an engine from 0.5 Nm cost € 40 with a motor drive cables to be 

compared even compared to other solutions, bringing to less than 200 €, the 

equivalent of drive / brushless motor and cables you get to about 800 €, but where 

the information of the position are available (encoder or resolver on the motor). 



Divider step by Drive 
To keep the cost of the application does not match an "encoder" or a ladder to 

read the position, therefore you lose a precision reference as the "marker", but we 

must be satisfied with the accuracy and repeatability of a microswitch signal given 

by mechanical or electronic, the lack of pace combined with the possible loss due 

to a possible hard mechanical means that can not be used as the axis of 

particularly high-speed machining, but only as an ironing service.

In the field dell'obbistica (drills homemade), is of course only use stepper motors 

are also used as a machining axes, but we are in another reality.

Another feature of the step motor drives to take into account is the maximum 

frequency of the signal PULSE, a good drive now comes as a maximum 

frequency of 150KHz, see what this means in our example 150000 pulses in a 

second means 3 rev / sec so in our example of 30mm per second, or 1.8 m / min 

which is a very slow speed, you have to use a divider to raise it up much less of, 

say, 16 instead of 256, which allows us to arrive at a reasonable speed of 28.8 m / 

minute, however, the positioning accuracy of 0.0002mm to 0.0015mm has grown 

from.

If we spend an eighth step of 57.6 m / min mm to 0,003 mm, which is a good 

compromise, the only flaw is that as you go down to division of the pass is lost in 

engine performance. 



Pilot frequency for motor drives and 

brushless DC
The driving of motor drives using a frequency pulse instead of an analog 

reference + - 10V has always been adopted by Japanese manufacturers since 

the 60's, this can not have the CONTROL PID position control, greatly 

simplifying it.

Today many manufacturers refer to this possibility of piloting an alternative to 

the reference voltage, thus extending the use of axes also handling low-end 

PLC.

The frequency control at the bottom of the universal standard is also to say 

how many units of the drive to position (position control rather than speed).

So the pilot frequency, more direction, has conformed to traditional stepper 

motors and motion control also allowed the low-end PLC.

Two issues remain in this mode of driving:

1) The voltage of the two signals allows 5Volt distances greater than 1 or 2 

meters between control and drive.

2) The pulsed signals with frequencies that can be up to 250Khz is easily 

disturbed from external sources, with a dramatic influence on the final 

positioning 



Motion Control Features Part 1
Motion control works in multi-task, clusters of axes defined by "handler"

dynamic that is referred to the movement controls.

A command handling is carried out in the following phases:

a) Iinterpolation motion command which involves both axes involved algorithms:

a.1) Linear interpolation, circular, spiral, "spline", "surf"

a.2) Anti-collision between the axles.

a.3) "Gantry.

a.4) Electronic cams

b) Transformation of coordinates in your work plan so we can have different 

configurations or types of robots:

b.1) SCARA

b.2) SCARA ROUTER

b.3) Polar

b.4) Polar sleeve

A

1 X

1

C

1

Z

1

1

X

1

A

1

B

1

C

1

Z

1

A

1 B

1

C

1

Z

1



Motion Control Features Part 2

c) Calculate the theoretical position of instantaneous

In calculating the actual position must comply with the laws of motion, 

accelerating, maintaining speed and finally programmed to decelerate.

The accelerations and decelerations can be:

c.1) Linear

c.2) "S_Curve"

c.3) Sinusoidal

d) Correcting the theoretical with the matrix, or vectors of linear compensation, 

balancing, rolling and pitching.

e) Monitoring the position of course, this feature is necessary if the command is 

given to the drive is speed or torque.

This capability is realized with the method of feedback PID (Proportional 

Derivative integrations) 



DCOM
The product "AxesBrain" was developed to provide handling services to user applications, using 

technology "DCOM", it will be possible to have access to these services not only from the same 

PC, but also integrated into the local network or PC connected through the Internet.

To use the services of handling can be used two main roads or functions using direct resources 

axes, spindles and output-input signals, or using programmed cycles. Using programming 

languages ​​are defined in procedures or courses of paths of the axes and handling and 

processing, in our case we have two languages ​​available: GP-PLCL and AxesBrainISO that you 

can use depending on the type of application that comes to present.

The handling services are:

Direct FUNCTIONS

commands to the axes and the output signals of fattening

acquisition of values ​​from the field, reading boards, I / O, sensors, etc..

mode settings for the trajectories, acquisitions, etc..

CYCLES processing and manipulation with programming by:

GP-PLC - proprietary language suitable to describe the cycles for the automation of handling 

general

AxesBrainISO - ISO standard language suitable to describe the typical cycles of milling and 

turning.


